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ABSTRACT

Transformers have emerged as powerful implicit rendering models, capable of per-
forming geometric reasoning and producing photorealistic novel views in a single
feedforward pass. A central challenge in these architectures is how to inject cam-
era parameters into the transformer in a way that generalises across diverse sensing
conditions. In this work, we present Rotary Ray Embedding (RoRE), an approach
that embeds image patches directly as rays, using a learning based rotary posi-
tional embedding (RoPE). This ray-based formulation provides a unified and gen-
eral representation, improving robustness to unconventional camera geometries
and sensing modalities. We evaluate our approach on conventional perspective
imagery, fisheye cameras, and multi-modal RGB-thermal setups, showing that a
single network can flexibly integrate arbitrary numbers of cameras and modalities
into a coherent scene representation. Experiments demonstrate improved general-
isation and cross-modal consistency compared to existing methods, highlighting
the potential for relative ray-based embeddings to build adaptable, plug-and-play
vision systems.

1 INTRODUCTION

Recent advances in vision transformers have shown their ability to unify geometry and appearance
across multiple views, enabling rapid and accurate scene understanding in 3D perception tasks

( ); ( ). A critical design choice in these architectures is how to inject
camera information into the model so that it can accurately align visual tokens with the underlying
3D scene structure. While absolute or relative positional encodings have been proposed, it remains
an open question how to best represent camera geometry in a way that is both expressive and gener-
alisable.

This challenge is amplified in heterogeneous settings, where inputs may differ in resolution, field
of view, and alignment. Multi-modal scenarios further exacerbate the problem: for instance, RGB
and thermal cameras exhibit radically different photometric characteristics while still needing to be
integrated into a coherent representation. Existing approaches often make strong assumptions about
camera intrinsics, sensor type, or rely on manually engineered fusion strategies ( ),
which limits flexibility.

In this work, we are interested in building robust 3D vision models that work for a range of camera
families. To that end, we introduce RoRE, a ray-based extension of RoPE ( ). Instead
of embedding patches by index, RoPE parameterises each patch as a ray, directly encoding where in
the scene it is looking. To realise this, we extend RoPE in two key ways: (i) the rotation frequen-
cies are learned rather than fixed, and (ii) asymmetric rotations are applied to break the inherent
forward-backward symmetry and encourage more uniform attention across the scene. This formu-
lation allows transformers designed for conventional imagery to naturally extend to new camera
geometries and sensing modalities.

Unlike recent pose-free architectures such as DuST3R ( ), VGGT

( ), and MapAnything ( ), our approach is designed for settings where camera
poses are available or can be easily obtained for instance in fixed multi-camera rigs commonly found
on vehicles ( R ; s ). Pose-free methods are valuable in scenarios
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where calibration is difficult or impossible, but they typically require substantially larger networks
and greater computational resources. In contrast, RORE leverages available pose information to
deliver a more efficient and generalisable solution.

We further demonstrate our method’s ability to fuse multi-modal information, specifically RGB-
thermal inputs. Thermal cues complement visible imagery and enable perception in challenging
conditions such as fog, smoke, darkness, or occlusion, supporting applications including asset in-
spection and search-and-rescue. A unified embedding of RGB and thermal rays also benefits down-
stream tasks such as classification, anomaly detection, segmentation, and general multi-modal scene
understanding. By operating directly on ray-based inputs from heterogeneous sensors, RoRE pro-
vides a shared geometric representation without requiring separate architectures for each modality.

We validate RoRE across five datasets, including perspective and fisheye imagery as well as syn-
thetic and captured multi-modal RGB-thermal datasets. Our experiments demonstrate that ray-based
rotary embeddings provide improved generalisation across camera geometries and modalities, while
enabling a single network to flexibly integrate arbitrary numbers of heterogeneous inputs.

In summary, this paper makes the following contributions: (1) A novel rotary embedding RoRE
that unifies absolute and relative encodings in a ray-based formulation. (2) A multi-modal training
scheme using modality-specific tokenisers with shared ray-based embeddings, trained via masked
cross-modality prediction for robust fusion. (3) Empirical validation across conventional, fisheye,
and multi-modal datasets, showing improved generalisation over state-of-the-art baselines. (4) A
synthetic indoor multi-modal dataset of 4,000 scenes with ground-truth poses, released with code
for data generation and experiments.

This work paves the way for more general network architectures that can be deployed across diverse
camera setups, facilitating broader adoption and practical use

2 RELATED WORK

Positional Embeddings in Transformers. Transformers rely on positional encodings to inject
structure into sequences of tokens, due to being permutation invariant. Early transformers adopted
additive absolute positional encoding (APE) ( s s ), which add
a specific bias to a vector based on a position value. Relative posmonal encoding (RPE) extends
this idea by representing pairwise relationships between tokens. One key feature of this is transla-
tional invariance, which leads to improved generalisation. This is typically done with either additive

bias terms depending on relative position between tokens ( , ) or rotary positional
embedding where the angle of rotation is based on position ( , ).
Vision transformers ( , ) have the same challenge in 2D where the position

of the patches being encoded need to be injected. This has been done in both APE (
) and RPE. However RoPE has become a popular choice of RPE for embedding the patch
location ( s ).

Geometric Vision. Geometric vision is a line of work with a goal to integrate information from
multiple cameras into unified scene understanding, with a range of tasks such as novel view syn-

thesis ( ), pose ( s ) or depth ( s ;b). Transformer
methods such as DuSTSR ( R ) and VGGT ( , ) demonstrates that
large transformer models can reconstruct geometry and synthesise views without explicit 3D su-
pervision. The Large View Synthesis Model (LVSM) ( , ) uses pose information for

implicit rendering and achieving strong performance with minimal architectural assumptions. No-
tably, the decoder-only variant of LVSM reduces the architecture to a single stack of self-attention
layers. In this work we adopt the LVSM architecture as the basis for our experiments given its
simplicity and strong performance.

Multi-Modal Vision. Beyond multiple viewpoints, recent research addresses fusing heterogeneous
modalities into a shared representation. They target a range of different tasks such as cross-modal

super resolution ( , ) or glass segmentation with RGB-thermal fusion ( ,
). ( ) fused RGB and thermal information to produce robust depth esti-
mation. ( ) proposed MultiMAE which learns a general-purpose transformer
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backbone that can process RGB, depth, and other modalities in a unified token space, however it
requires confocal images, which is something we address in this work.

( ) adapt NeRFs ( , ) to work with RGB and thermal images
while ( ) adapts Gaussian splatting ( , ) techniques to work for thermal
images and ( ) extends it further to fuse thermal and RGB imagery into one scene

understanding. These works demonstrate the benefits of complementary information across sensors
and motivate extending view-synthesis transformers to multi-modal inputs, where alignment and
fusion strategies remain open challenges. To our knowledge no works exist that perform feedforward
multi-modal novel view synthesis, this is a key development of our work.

Injecting Pose and Modality Information. A central question in transformer-based implicit ren-
dering is how to inject camera pose and modality information. To faithfully capture camera pose

and viewing geometry ( ) embeds this information through additive means to the
tokens. Similarly, ( ) employs Pliicker ray embeddings to represent viewing geome-
try using APE. CaPE ( , ) and GTA ( , ) investigate conditioning
attention on relative camera transformations, based on rotational biases. ( ) propose

PROPE which encodes entire camera frustums as relative positional embeddings. These work use
the fact that relative embedding should generalise better, however these works move away from the
ray-based representations, and this hinders generalisation.

Other approaches have opted to rely only on APE, as in MapAnything ( , ), where
they state the RoOPE method tends to lead to unnecessary biases, this is something we aim to mitigate
in this work.

For embedding additional modalities VRoPE ( , ), Qwen2-VL ( , )
and other related approaches extend rotary embeddings to handle a temporal dimension. Multi-
MAE ( , ) embeds multiple modalities into a single latent space. This is done
using modality specific patch encoding on inputs and specific modality heads for outputs, we adopt
a similar approach in this work.

3 ROTARY RAY EMBEDDING

A central goal of this work is to combine the benefits of relative positional encodings with the
generality of ray-based representations. Ray embeddings provide a unified way to represent im-
age patches across diverse camera types, while relative encodings capture geometric relationships
between views. To achieve both, we build on the RoPE formulation and introduce key modifica-
tions: embedding rays directly, learning rotation frequencies, and using asymmetric position values
to reduce attention biases. Using this embedding design, we develop a multi-modal geometric trans-
former that leverages our proposed RoRE, adapting the architecture to handle heterogeneous sensor
modalities and integrate diverse camera inputs into a coherent geometric representation.

3.1 PRELIMINARIES

( ) introduced RoPE which is designed to perform rotations of a d dimensional vector
x as a way to embed relative positional information into a new vector x,tqtcq. Mathematically this
is:

Lrotated = fRoPE (m; m)) (D
fROPE(w;m) = RZzl'v (2)
where R} is an n dimensional rotation matrix constructed by multiple 2D rotation matrices:

R?n = dla‘g [RQd(m91)7 RQd(m92)7 ceey RQd(mgn/2)} dxd’ (3)

here R24(0) is the SO(2) rotation matrix with angle 0. The 6 is predefined based on the following:

0; = 1000 2(~1/d, 4)
fori € [1,2,...,d/2]. This provides decay of the rotation frequencies ( , ). For
further details and formal explanation see ( ).
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While this was originally applied to one dimensional positional information for language models, it
has also been applied to two dimensional positional embedding of pixel indices ( ,

; , ; , ). To do this the vector is split into two © = [a:?lz), w%)]

where one half is rotated according to some pixel index u and the other half is rotated based on some
pixel index v. Giving:

Trotated = [f(w§12)7 u)a f(x(/22)7 U)] (5)

In our case we do not want to use pixel indices instead we want to encode rays.

3.2 EMBEDDING RAYS

In this work, we embed a single ray for each image patch. Specifically, we use the ray corresponding
to the patch centre, computed as the average of the rays of all pixels within that patch. This ray is
then used to embed the position of a given patch. Building from base RoPE, we now have higher
dimensional positions, in our case the 6 that are required to represent the Pliicker ray. Which has 3
position (or moment in the case of Pliicker coordinates) dimensions ¢ and 3 direction dimensions d.
Meaning a new strategy needs to developed to embed this information. A straightforward extension

is to break up the embedding further into 6 parts = [w&lﬁ), s 33%)], leading to:

trotatea = [ £ (2% t2)  f (@50 ts) o F (2 82) 1 (28 a) o 1 (230,) o f (07).42)]
(©)

We note, the more dimensions being embedded the more fragmented the vector becomes, essentially
putting additional constraints on the latent space. The position and direction components differ
fundamentally in magnitude and semantic meaning. The magnitude of the frequencies required for
translations values is likely to be different to that of the direction vectors.

We propose another approach by replacing the standard handcrafted base frequencies in Eqn. 4 with
learned frequencies for each dimension, superimposing their contributions without fragmenting the
embedding space. This allows the network to learn how position dimensions interact with different
parts of the latent space. Our frequencies 6,4/ have size p x g, where p = 6 represents the ray
dimensions and d is the query/key token dimension.

The final rotation around a given plane in the d dimensional space is the superposition of the of all
the learned @ values scaled by their respective ray-position values:

R%‘,doRE(Pv ;) = R* (Z (P 01‘47)) ) (7N
P
where P, is the position value vector [ts,ty,t.,ds,dy,d;] containing the position values for a

patch, 6; is the learned frequencies across all position dimensions for a given rotation plane
i €[1,2,...,d/2]. Our RoRE formulation then becomes:

Lrotated = fRoRE (iL’, Pv 9) ) (8)
frorE (2,0, P) :== R}, 9)

where
RZ = diag[R%%RE(Pa 01), R?%doRE(Pv 02), --~R§%doRE(P» ad/2)]33- (10)

The learned 6 parameter is randomly initialised using uniform initialisation between 0 to 0.5, it is left
to future research to look into alternative initialisation strategies and how this effects performance.

Fig. 1 shows the learned rotation frequencies. It is encouraging that the model discovers a de-
cay structure similar to the handcrafted schedule, despite being trained without any explicit con-
straints. This behaviour aligns with the established research: representing ray geometry requires a
spectrum of frequencies, with higher-frequency components capturing fine-grained variations and
lower-frequency components capturing broader spatial trends. The resulting learned decay therefore
mirrors the intended multi-scale behaviour of classical positional embedding, providing evidence
that the learnt embedding parameters can autonomously recover a meaningful and interpretable fre-
quency structure.



Published as a conference paper at ICLR 2026

Learnt Rotation Frequencies Learnt vs Handcrafted Rotation Frequencies
= 1.0
0.15 Learnt Position Freq g Learnt Position Freq
Learnt Direction Freq % 0.8 Learnt Direction Freq
Q 0.10 5 Handcrafted Freq
z 0 & 0.6
& =
& Z 04
— 5 =
0.05 E
5 0.2
Z.
0.00 0.0

0 5 10 15 20 ’ 0 5 10 15 20
Frequency Index Frequency Index
Figure 1: Comparison of learned vs handcrafted frequency. Left compares the learned frequency
for the position and direction dimension, it shows the magnitude of rotations that has been learned is
larger for position than it is for direction. Right is comparing the normalised position and direction
frequencies to the standard handcrafted frequency from Eqn. 4. While similar the learned frequen-
cies differ from the handcrafted ones.

There are also clear differences between the position (moment) and direction dimensions, both in
frequency decay and scale. This is expected, as the two quantities encode different geometric in-
formation. Positional components span a broader normalised range [0, 1], whereas direction vectors
vary more subtly due to camera motion constraints and overlapping fields of view. Consequently,
the model allocates higher effective frequencies to direction channels and lower ones to position
channels. The slightly sharper decay for direction likely reflects the finer rotational relationships be-
tween neighbouring rays. Overall, these patterns indicate that RoRE learns a meaningful multi-scale
structure without requiring handcrafted schedules.

A key benefit of this method is it removes the manual hyper-parameter selection process that is
required for the handcraft method. We note that the ablation study (Tab. 4) shows very similar
performance between the method outlined in Eqn. 6 and the learnt method in Eqn. 8. Due to the
benefits of the learnt based approach outlined above we use this method for our proposed approach.

3.3 ASYMMETRIC ROTATIONS

Standard RoPE, originally developed for NLP, is designed to emphasise local interactions by causing
attention magnitudes to decay as the positional distance between tokens increases ( ),
which is a natural property of RoPE’s formulation. While beneficial for sequence modelling, this
behaviour is undesirable in 3D vision, where rays that are far apart in image space may still hold
important geometric relationships. To remove this distance-dependent attenuation, we extend an
approach taken in VRoPE ( , ) where a shifted negative counterpart of each positional
component, ensuring that encoded magnitudes remain consistent across the ray domain. This mod-
ification preserves RoPE’s rotational properties while preventing the unintended decay in attention,
making the embedding better suited to ray-based scene representation. This can be expressed as:

P = [t"r’ t_7 d+7 d_] = [t7 _t7 d; _d} + [07 bshift7 Oa bshift} . (11)

where P is the position vector for a given patch, with £ and d being the translation and direction
components of the ray respectively. The bs,;f+ is equal to 1 in our case, as the position £ and direction
d values are normalised to have a maximum value of 1. In practice in the 8, 4, the p dimension is
actually twice the size of the original position vector.

Fig. 2 shows a visual comparison of embedding rays with and without the asymmetric positioning.
For this comparison we take unit vectors for query and key tokens and compute the attention score
between them after the rotary ray embedding has been applied. This is calculated for 3 images with
different poses, with the attention scores being normalised. Without the asymmetric positioning the
attention score is not uniform across the patches meaning it is biased toward rays near the query ray.
While the asymmetric positions provide a much closer to uniform attention across the frames.

3.4 MULTI-MODAL GEOMETRIC MODELS

A central goal of this work is to design models that are adaptable to diverse sensing modalities while
retaining geometric consistency. We achieve this by leveraging transformers ability to understand
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Figure 2: Attention Comparison. Attention between frames at different positions using the Pliicker
parametrisation. The attention score between a query patch, identified in red, and all other patches
is shown. Unit query and key vectors are used for this demonstration. The standard RoPE position
values bias attention to rays near the query ray. This is problematic because geometric correspon-
dences need not be spatially local. The asymmetric approach removes this bias providing a more
uniform attention across possible position values.

multimodal as shown in MultiMAE ( , ), with the generic ray based positional
embedding. This enables a single forward pass to jointly reason over RGB, thermal, and depth
information. Unlike confocal formulations, our method operates directly on posed images, using
photometric self-supervision to learn cross-modal correspondences.

Each modality is equipped with its own input tokeniser and output head within an encoder-decoder
structure, following the general design of LVSM ( , ). Further architectural details and
a diagram are provided in Appendix A.1.2. To represent modality information, we use both absolute
embeddings and modality-aware RoRE embeddings. This adds a modality class to the position vec-
tor P resulting in P40t = [p Cmedality] where C"4e!it s a numerical class modality of
the patch. While relative encoding is not directly applicable to discrete modality classes, embedding
them within the same framework ensures consistency with the geometric positional encoding.

While our multimodal formulation does not require depth supervision, we include a depth-prediction
head to show that RoRE supports explicit geometric estimation. In this work, we use ground-truth
depth from our dataset to produce metrically meaningful depth alongside RGB and thermal outputs.
A natural extension is to adopt self-supervised depth learning ( ), enabling operation
in settings without ground-truth depth.

Masked input strategies have proven effective in recent vision research, particularly in encouraging
models to develop generalisable and semantically rich internal representations ( , ).
Inspired by this, we extend masked input strategies to multi-modal settings, where we mask input
image patches based on a fixed masking ratio. This allows the model to learn to interpolate across
both missing spatial regions and absent modalities.

Training samples consist of randomly selected context and target views drawn from varying modality
combinations to encourage robustness under asymmetric input conditions. The network is trained
with a combination of photometric losses (MSE and perceptual) and a depth loss that enforces
geometric consistency. While the depth loss is not necessary for RGB-thermal fusion and rendering,
it is an additional constraint on geometry and allows for explicit depth estimation from the network.
Full details of the training setup and loss formulations are provided in Appendix A.1.2.

4 EXPERIMENTS

We perform two sets of experiments: RGB experiments evaluating robustness across camera geome-
tries, and (ii)) RGB—thermal experiments evaluating the models ability to generalisation multi-modal
data. Unless otherwise stated all experiments are run with two input images from a scene with
different but known poses. These images correspond to those shown in the qualitative examples.

Implementation Details. For the RGB experiments, we adopt the LVSM architecture
( ), which provides a simple yet highly effective baseline for view synthesis. This choice en-
ables controlled and standardised comparisons with alternative methods, though our proposed em-
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Table 1: Novel view synthesis results. Results from RealEstate10K (training domain) and DL3DV
(unseen but similar domain). All methods perform comparably, with LVSM performing marginally
worse and PRoPE performing marginally better. Method marked with  represents concurrent work.

Method RealEstate 10k DL3DV Iteration Time
PSNR(1) SSIM(f) LPIPS({) \ PSNR(T) SSIM(1) LPIPS({) \ Seconds
LVSM 26.18 0.834 0.076 19.48 0.604 0.281 1.287
GTA 26.74 0.846 0.069 19.55 0.614 0.281 1.647
PRoPE' 26.81 0.848 0.068 19.68 0.620 0.278 1.454
RoRE (ours) 26.65 0.845 0.070 19.77 0.619 0.279 1.326

Table 2: Quantitative evaluation under varying focal lengths. Models are tested without retrain-
ing by cropping target and query images to simulate changes in camera intrinsics. Methods with
stronger representation constraints (GTA and PRoPE) fail to adapt, while LVSM and RoRE remain
robust. RoRE consistently outperforms LVSM, demonstrating the advantage of a relative ray-based
embeddings for generalisation across intrinsics variations.

Method RealEstate 10k DL3DV

PSNR(1) SSIM(1) LPIPS({) \ PSNR(T) SSIM(1) LPIPS({)
LVSM 21.95 0.744 0.219 19.86 0.653 0.349
GTA 14.81 0.523 0.459 14.47 0.469 0.564
PRoPE 14.71 0.516 0.486 14.28 0.454 0.617
RORE (ours) 22.66 0.770 0.211 20.31 0.678 0.335

bedding scheme could be integrated into a wide range of architectures. To reduce computational
requirements, we scale the model size down following ( ).

For the multi-modal experiments, we employ a modified architecture in which target and query im-
ages interact through cross-attention. This design is motivated by prior work such as DuST3R

( ) and related models, where cross-attention has proven to be a reliable mechanism for
integrating information across views. Additionally as we are learning depth maps we replace the
Pliicker coordinates with the simpler raymaps, that encode rays as position and direction, instead
of moment and direction. Further implementation details, including model configurations, training
parameters, hardware setup, and training time, are provided in Appendix A.1.

Datasets. We evaluate our approach across a diverse set of datasets spanning conventional per-
spective imagery, fisheye imagery, and multi-modal RGB-thermal data. For training, we use

RealEstate 10K ( , ), a large-scale dataset of posed perspective videos that serves
as the primary basis for our models. To assess generalisation to unseen conventional imagery, we
further evaluate on DL3DV ( R ), which contains data of a similar type but is not used

during training. To test robustness to novel camera geometries, we employ FIORD ( ,
), a fisheye dataset that provides a challenging departure from the perspective imagery seen dur-
ing training. For multi-modal experiments, we introduce MultiModalBlender, a simulated dataset
of RGB, thermal and depth images. Large-scale multi-modal datasets are scarce, particularly at the
scale required for training transformers, and this dataset enables training with cross-modal fusion.
To validate performance qualitatively on real multi-modal imagery, we make use of the Thermal-
Gaussian dataset ( s ), which provides data captured in real-world conditions. Together,
these datasets allow us to evaluate generalisation across camera geometry, and sensing modality.

Baselines. For validating our relative ray-based embedding method we compare to methods of
novel view synthesis that perform positional embedding in different ways with different information:

LVSM ( , ) which is an absolute positional embedding only method as described in their
paper; GTA ( , ) which using both ray based absolute embedding and their relative
encoding of camera extrinsics; and finally concurrent work PRoPE ( , ), which embeds

their own camera base absolute embedding and a modified GTA relative embedding that also embed
camera intrinsic using a projection matrix. All methods including ours uses the exact same model
architecture keeping all parameters the same except for varying the embedding method.
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Table 3: Quantitative evaluation on distorted and fisheye inputs. Barrel-distorted RealEstate 10K
images and native FIORD fisheye images are used as inputs without retraining. RoRE generalises
robustly to both cases, while GTA and PRoPE fail due to the absence of explicit ray-direction en-
coding.

Method Distorted RE10K Fisheye FIORD

PSNR(1) SSIM(1) LPIPS(}) | PSNR(1) SSIM(1) LPIPS(})
LVSM 21.99 0.725 0.142 2252 0.732 0310
GTA 18.58 0.605 0.188 11.64 0.456 0.596
PROPE 18.57 0.605 0.188 11.90 0.408 0.673

RoRE (ours) 23.96 0.802 0.124 23.55 0.746 0.284

Input Images LVSM GTA PRoPE RoRE Ground Truth

Distorted

Fisheye

Figure 3: Qualitative results on distorted and fisheye inputs. RoRE preserves scene structure
under both barrel-distorted perspective images (top) and native fisheye images (bottom), whereas
competing methods produce severe artefacts or fail to reconstruct meaningful views.

We are unaware of any existing alternative feedforward multi-modal models, as such we do not
perform direct comparisons to alternative multimodal feedforward methods for our multi-modal
approach instead we show different operating modes to characterise its performance. We evaluate
reconstruction quality using PSNR, SSIM, and LPIPS for both RGB and thermal outputs, noting that
perceptual metrics such as LPIPS were not originally designed for thermal imagery and therefore
cannot be directly compared to their RGB counterparts.

4.1 RORE EMBEDDING

Tab. 1 reports novel view synthesis results on RealEstate10K and DL3DV. All models are trained
on RealEstate10K, with evaluation on the same dataset reflecting in-domain performance, and
DL3DV providing an unseen but closely related test set. Across both datasets, the methods achieve
broadly comparable results: PRoPE performs slightly better on the training domain, while LVSM
is marginally lower. While these results do not highlight a clear advantage for our method, they
establish that RoRE remains competitive on standard benchmarks, with its benefits becoming more
evident in settings that require greater generalisation, as demonstrated in subsequent experiments.

Varying Intrinsics. We evaluate robustness to changes in camera intrinsics by varying the focal
length of target and query images through cropping, with randomly chosen magnification of up to
3. This experiment was conducted without retraining the models. As shown in Tab. 2 and Fig. 7
in Appendix A.2.1, methods with stronger representation constraints, such as GTA and PRoPE,
fail to adapt. In contrast, LVSM and our RoRE handle these variations effectively, with RoRE
consistently outperforming LVSM. While PRoPE can address this case with additional training, our
results highlight the inherent advantage of ray-based embeddings, which are naturally invariant to
changes in intrinsics.

Distorted and Fisheye Inputs. We next test robustness to non-perspective inputs, using (i) perspec-
tive images from RealEstate]10K with added barrel distortion and (ii) native fisheye images from
FIORD as shown in Tab. 3 and Fig. 3. Distorted inputs are paired with perspective queries, and all
evaluations are conducted without retraining.
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Table 4: Ablation study on RE10K. The study shows adding the relative embedding in any form
improves the performance. The asymmetric positioning provides another modest improvement to
performance. Applying the learnt frequency vs handcrafted produces identical results but as stated
provides a more general approach. RoRE performs similarly whether the additional absolute em-
bedding is applied or not.

Absolute Emb.  Relative Emb.  Learnt Frequencies ~Asymmetric PSNR(1) SSIM(T) LPIPS({)

26.18 0.834 0.076
26.56 0.843 0.071
26.65 0.845 0.070
26.57 0.842 0.072
26.65 0.843 0.070
26.65 0.845 0.070

NN NENEN
SO
SO % %
SO>S x %

Input Images Predicted Images Ground Truth

Figure 4: Qualitative results on the MultiModalBlender dataset. P, and P, denote different
camera poses. This figure show the model’s ability to infer missing regions of one modality using
cues from another in a geometrically consistent way: (red region) a green chair partially visible in
the RGB input is completed using thermal cues, while a red chair absent in RGB inputs has its shape
inferred but colour misestimated, (blue region) in the thermal domain, a partially visible chair is
reconstructed with accurate geometry and appearance by leveraging RGB information. Depth maps
remain consistent across all modality settings.

Our method demonstrates consistently stronger generalisation than competing approaches, outper-
forming LVSM by over 1 dB in PSNR, while GTA and PRoPE fail due to the absence of explicit
ray-direction encoding. The fisheye case is particularly relevant, since rectification would reduce
field of view; RoRE can handle these inputs directly, capturing the global distortion, though some
local inaccuracies remain, see Sec. A.2.2 for further details.

Discussion. These results reflect the differing representational biases of the methods. PRoPE uses
a constrained, camera-specific formulation based on projection-matrix relative encodings, which
aligns well with conventional perspective data such as RE10K, with GTA imposing an even more
restricted variant with just the extrinsics. RoRE, by contrast, encodes full rays and learns multi-
dimensional frequency interactions, resulting in a more expressive and geometry-agnostic repre-
sentation. This flexibility leads to substantially stronger generalisation under intrinsics changes,
distortion, and fisheye inputs (Table 2, 3). However, its less constrained embedding space can yield
slightly lower performance on tightly scoped perspective datasets such as RE10K and DL3DV (Ta-
ble 1).

Ablation Study. We ablate different components of our method, shown in Tab. 4. Firstly, the learnt
frequencies refers to the method outlined in Sec. 3.2. The method without it refers to the process
outlined in Eqn. 6. Asymmetric refers to the method outlined in Sec. 3.3. Including asymmetric po-
sitioning provides a modest increase to performance. Using learned frequencies yields performance
comparable to the handcrafted schedule. However, we note that this formulation is a more general
solution that removes the need for additional hand tune parameters and handcrafted elements, for
this reason our proposed method utilises these learnt frequencies, as they do not impact performance
or inference time.

Since the RPE is separate and complementarily to the APE we can use any combination of the
embedding methods. The study demonstrates that the performance boost comes from using the
RPE compared to the APE, when including both the performance is roughly the same, this is an
indication that the network relies on the most appropriate embedding information. Our relative
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Table 5: Quantitative results on the MultiModalBlender dataset. One model under different in-
put modality configurations (RGB-RGB, RGB-thermal, and thermal-thermal). The results demon-
strate that a single model can generalises across all cases.

I RGB Thermal Depth
nput Images

PSNR(1) SSIM(f) LPIPS(}) | PSNR() SSIM(T) LPIPS({) | AbsRel(}) RMSE(}) 4:1(1)
RGB-RGB 22.995 0.674 0.218 - - - 0.060 0.024  0.965
RGB-thermal 21.494 0.634 0.254 20.481 0.807 0.172 0.060 0.025 0.964
thermal-thermal - - - 21.662 0.825 0.153 0.065 0.027  0.959

Input Images Predicted Images Ground Truth

b okt

- —

Input Images Predicted Images Ground Truth

oy

Building
Truck

Figure 5: Qualitative results on the ThermalGaussian dataset ( , ). The model
generates consistent RGB-thermal renderings without additional training.

embedding method could work just fine without the absolute embedding, however we do include it
in the other experiments as it does show a slightly higher SSIM score.

4.2 MULTI-MODAL SCENE UNDERSTANDING

Simulated Results. We train a single model capable of handling different modality combinations
and numbers of input images. Quantitative results on the MultiModalBlender dataset (Tab. 5) show
robust performance across all modality configurations, with slightly reduced depth accuracy for
thermal-only inputs due to lower texture information. The lower absolute metrics seen compared to
RealEstate10K are due to more complex motion in the dataset. Qualitative examples (Fig. 4) illus-
trate the model’s ability to fuse modalities: partially visible objects in one modality are completed
using cues from the other. For example, (red region) a green chair partially visible in the RGB input
is completed using structural cues from the thermal image, while a red chair absent from the RGB
inputs has its shape inferred correctly but its colour misestimated. Depth predictions remain co-
herent, reflecting a unified cross-modal understanding of scene geometry. Additional experiments,
including progressive input masking and multi-camera evaluations, are provided in Appendix A.2.3.

Real-world Results. Fig. 5 shows qualitative renderings on the ThermalGaussian dataset ( ,

). Due to the dataset’s limited size, we evaluate via inference only. The results demonstrate
that the model can process real-world RGB-thermal inputs and produce accurate renderings, even
in environments different from the training domain, highlighting its potential for real-world deploy-
ment. Some edge effects are present when rendering beyond the spatial extent of inputs; for instance,
the truck cabin is extrapolated using nearby visual information. While performance is promising,
a simulation-to-real gap remains, we hypothesise, due to differences in scene type, motion, and
simulated thermal fidelity, representing an important avenue for future work.

5 CONCLUSIONS

We introduced RoRE, a ray-based rotary embedding that generalises effectively across diverse cam-
eras and imaging geometries. Our results show that ray-space embeddings yield stronger perfor-
mance, rather than extrinsic or projection parameters, under varying camera geometries, such as
in the fisheye case. We also extended transformer architectures to support multi-modal inputs and
constructed a synthetic RGB-thermal dataset to enable this research. The resulting model achieves
unified, geometrically consistent scene understanding from non-confocal images, showing encour-
aging results on both simulated and real-world data.
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One limitation of this formulation is that each patch is represented by a single ray, meaning patch
size and orientation are not encoded explicitly. Although these factors are likely inferred implicitly
by the network, this does constrain the expressiveness of the representation. Incorporating these
parameters directly is an interesting direction for future work. Additional future work includes
extending to additional input modalities (e.g., depth or polarisation) and validating multi-modal
fusion at larger scales in real-world conditions. This work takes a step toward flexible, plug-and-
play vision systems that move beyond conventional camera configurations.

ETHICS STATEMENT

The development and training of the large-scale models used in this work required substantial com-
putational resources, which in turn consume significant amounts of energy. To promote transparency
and awareness around sustainability, we roughly monitored the total energy consumption associated
with our development and experiments. See Appendix A.3 for details.

REPRODUCIBILITY STATEMENT

Implementation details have been supplied in Appendix A.l with configurations, as well as the
dataset and code to be made publicly available. A link to an anonymous repository will be made
available to reviewers in discussion forum.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS
A.1.1 RGB EXPERIMENTAL DETAILS

Model Architecture. The model parameters are outlined in Tab. 6. The total number of parameters
for the model is 24.49M.

Table 6: Multi-modal configuration values.

Section Parameter Value/Setting
Model Layers 6
Emdedding Dimension 768

Heads 16

Positional Embedding ~ RoRE/LVSM/GTA/PRoPE

Ray Parameterisation Pliicker

Head Type Linear

Patch Embeding Embedding Type Linear
Patch Size 8x8

Dataset Context Views 2
Target Views 2

Optimizer Learning Rate 4.00e-4
Warm-up Steps 2500

Training Steps 80000

Data Loader Batch Size (per GPU) 32
Image Size 256x256

Loss MSE Weight 1.0
Perceptual Loss Weight 0.5

Training. Training was performed on 2 x RTX6000 Ada GPUs, Training time for a single run was
approximately 30 hours.

A.1.2 MULTI-MODAL EXPERIMENTAL DETAILS

Model Architecture. Model parameters are provided in Tab. 7 and a graphical illustration of net-
work architectures is depicted in

Table 7: Multi-modal configuration values.

Section Parameter  Value/Setting
Model Encoder Backbone ViT Large
Decoder Backbone ViT Base

Positional Embedding RoRE

Ray Parameterisation raymap

Head Type DPT

Patch Embeding Embedding Type conv
Patch Size 16x16

Dataset Context Views 8
Target Views 6

Optimizer Learning Rate 5.00e-5
‘Warm-up Steps 500

Data Loader Batch Size (train) 2
Image Size 256x256

Loss MSE Weight (Amse) 1.0
LPIPS Weight (A1pips) 0.05

Depth Loss Weight (Agepth) 0.75

Masking Masking Ratio 50%

Training. We pre-train our network on RealEstate10K, to precondition the network, before train-
ing on multi-modal data. This is done because RealEstate10K is a larger dataset and should help
generalise. Training was performed on 2 x RTX6000 Ada GPUs, with the initial RealEstate]1 0K
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Figure 6: Multi-modal, multi-camera architecture. The architecture has two stages, an encoder
where images are patchified and encoded into a multi-modal scene encoding. This encoding can
then be used by the decoder to render novel views. This architecture makes use of our ray based
ROPE to enable the embedding of camera intrinsics and extrinsics. This embedding is used in both
the Encoder and Decoder layers. Otherwise these encoder and decoder layers are fairly standard
self-attention and cross-attention layers respectively.

pretraining taking around 4 days to complete and the final multi-modal model being trained for 7
days.

Loss Functions. To train the network, we employ a combination of photometric and geometric
supervision. Specifically, the total loss function consists of two appearance-based losses and one
depth-based loss:

L= )\mseﬁmse + Alpips‘clpips + )\depthﬁdepth- (12)
where L5 is the MSE loss between predicted and ground-truth RGB or thermal reconstructions,
and Lipips is the LPIPS, which captures higher-level structural and semantic differences between the
reconstructed and reference images. To enforce geometric consistency, we also include a depth loss,
Ldepth, defined as:

N
1 a N
Laeptn = 77 ) |di = di| + |Vd; = Vdi|, (13)
=1

where d; and d; represent the ground-truth and predicted depths at pixel ¢, and V denotes the spatial
gradient operator. The loss combines both absolute depth error and gradient-based smoothness, a
formulation commonly used in monocular depth estimation encourage accurate relative depth. This
loss works well for bounded scene e.g. indoors. If the method was being applied in scenes with
large depth values e.g. outside, we would employ losses resilient to the reduced accuracy associated
with larger depths.

The scalar weights Apge, Alpips, and Adepth balance the contributions of the respective terms, values
for these are given in Tab. 7. This multi-term loss encourages the model to produce reconstructions
that are both photometrically accurate and geometrically consistent, which is critical for effective
multi-view, multi-modal synthesis.
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Input Images LVSM GTA PRoPE RoRE Ground Truth

Figure 7: Varying intrinsics in scene. When the camera intrinsics varies within a scene without
any additional training, we see both GTA and PRoPE fail to interpret the new cameras. The authors
of PRoPE show that with training PRoPE is capable, however RoRE natively understands this.

Input Images RoRE Ground Truth

Figure 8: Fisheye failure case. Example failure case of RoRE of fisheye images, the local patches
that RoRE produces can become misorientated. (red) shows an inset of RoRE’s output, (blue) shows
same inset from ground truth.

A.2 ADDITIONAL RESULTS
A.2.1 RORE RESULTS

Fig. 7 show qualitative results on the RealEstate10K and DL3DV datasets with varying intrinsics.
Intrinsics were synthetically adjusted using cropping to increase the focal length. It can be observed
that GTA and PROPE fail to interpret the varying intrinsics values. LVSM performs better but
looking at the RE10K example the rendering is partially warped. RoRE produces the best results.

A.2.2 FISHEYE RESULTS

Fig. 8 shows a failure case of RoRE on fisheye imagery. This shows that while RoRE is able to render
the global geometry quite well the local patch geometry is poorly reconstructed. One possible reason
for this error is RoREs lack of ability to explicitly model a patches size and orientation. As these
properties are implicitly estimated during training, when taken outside of that training domain, these
estimations are likely less accurate.

A.2.3 MULTI-MODAL RESULTS

Masked Input. The use of masked input tokens during training allows the model to handle partial
occlusions and missing data at inference. By learning to reconstruct scenes from incomplete inputs,
the network becomes robust to real-world scenarios where sensors may be partially obscured by dirt,
water, or glare.

We evaluate this robustness by progressively increasing the fraction of masked input tokens at infer-
ence, with quantitative results in Tab. 8 and qualitative examples in Fig. 9. Performance gradually
declines as masking increases, but remains surprisingly stable up to moderate levels.

At 10-50% masking, reconstructions and depth predictions remain high-quality; even with 50% of
input patches masked, key scene elements, such as the black box on the bottom shelf, are accurately
recovered. A more noticeable drop occurs at 70% masking, where finer details are lost, yet the
network still predicts plausible global structure and broadly consistent depth maps.
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Table 8: Progressive masking of input images.

Masked RGB Thermal Depth

PSNR(1) SSIM(1) LPIPS({) | PSNR(1) SSIM(f) LPIPS(]) | AbsRel(}) RMSE(]) 4:1(1)
0% 21.494 0.634 0.254 | 20. 481 0.807 0.172 | 0.060 0.025 0.964
10% 20.875 0.618 0.269 20.021 0.799 0.181 0.063 0.025 0.962
30% 19.612 0.576 0.303 18.933 0.779 0.205 0.067 0.027 0.957
50% 18.287 0.525 0.350 17.755 0.752 0.239 0.076 0.031 0.945
70% 16.913 0.477 0.409 16.367 0.722 0.286 0.105 0.042 0.884
90% 14.902 0.448 0.496 14.183 0.693 0.366 0.207 0.082 0.537

Masked % Input Images Rendered Images

0%

10%

30%

50%

70%

90%

Ground Truth

Figure 9: Progressive masking of inputs. Progressive masking of multi-modal inputs, the results
show that the method is robust to the reduction in information.

Multi-Camera Reconstruction. To evaluate the scalability and generalisability of our multi-modal
transformer, we assess its performance with varying numbers and combinations of input images.
Unlike previous models that assume a fixed number and modality, our framework can accept any
number of views, mixing RGB and thermal inputs, constrained only by memory and compute at
inference.

We perform two experiments, summarised in Tab. 9. In the first, we vary the number of inputs, using
equal RGB and thermal splits (1 RGB + 1 thermal up to 4 RGB + 4 thermal). In the second, we fix
six inputs and vary the RGB-to-thermal ratio to explore modality dominance effects.

17



Published as a conference paper at ICLR 2026

Results show that increasing input number improves photometric and depth predictions, yielding
more complete reconstructions with fewer artefacts. When varying modality composition, more
thermal inputs enhance thermal fidelity but slightly reduce RGB quality, and vice versa. Depth
estimates remain largely stable, performing slightly better when RGB images dominate, likely due
to their higher spatial resolution and texture cues.

Table 9: Varying number of input images and modalities. Our proposed approach is able to
handle a range of input images across a varying ratio of modalities.

RGB Thermal Depth Encode Time Decode Time
Input Images PSNR(1) SSIM(1) LPIPS({) | PSNR(1) SSIM(1) LPIPS(}) | AbsRel(}) RMSE(}) di(1) | ms ms
1 (1-RGB) 19.738 0.588 0.301 - - - 0.084 0.033  0.929 35.413 35513
1 (1-thermal) - - - 18.610 0.783 0.215 0.100 0.036  0.909 34.312 34.902
2 (1-RGB, I-thermal) 20.470 0.605 0.280 20.068 0.803 0.181 0.062 0.026  0.958 37.493 40.662
4 (2-RGB, 2-thermal) 21.751 0.638 0.246 21.008 0.816 0.161 0.053 0.022  0.966 47.489 44.182
8 (4-RGB, 4-thermal) 22767 0.656 0.223 22.104 0.833 0.140 0.044 0.019  0.979 95.566 54.249
6 (1-RGB, 5-thermal) 20.927 0.615 0.269 22.082 0.833 0.143 0.051 0.022  0.971 71.211 49.486
6 (2-RGB, 4-thermal) 22.013 0.642 0.241 21.829 0.829 0.146 0.050 0.021 0.972 71.451 49.569
6 (3-RGB, 3-thermal) 22.409 0.649 0.231 21.580 0.825 0.151 0.049 0.021  0.975 70.531 49.441
6 (4-RGB, 2-thermal) 22.730 0.656 0.223 21.209 0.819 0.156 0.048 0.021  0.975 70.524 49.403
6 (5-RGB, I-thermal) 22916 0.661 0.218 20.534 0.808 0.168 0.049 0.021  0.975 71.594 49.488

A.3 ENERGY USAGE

The development and training of large-scale machine learning models requires substantial computa-
tional resources, which in turn consume significant amounts of energy. In the interest of transparency
and promoting sustainability in Al research, we tracked the total energy consumption associated with
the experiments and model development presented in this work. Numerical values are provided in
Tab. 10

Table 10: Energy Consumption. Energy consumption during model development and estimated
equivalent emissions

Metric Estimate
Total Energy Used 2554 kWh
COz-equivalent emissions 1600 kg

Equivalent vehicle distance driven 13,350 km
Equivalent household energy usage 230 days

Energy usage was monitored using the open-source CodeCarbon Python package

( ), which estimates energy consumption based on hardware usage and local electricity grid
intensity. Over the course of this work, the total energy consumed was approximately 2,900 kilowatt-
hours (kWh), which is roughly equivalent to 230 days of typical household electricity usage.

By reporting these figures, we aim to provide context around the computational and energy costs
of large-scale model development. We encourage the broader research community to adopt similar
practices for monitoring and reporting energy consumption, supporting efforts toward more envi-
ronmentally responsible and efficient Al research.

A.4 GENERATIVE Al USAGE
ChatGPT was used as a proofreading tool to aid in grammer and sentence structuring. Where text

was modified by generative Al, the content was reviewed for possible errors, inaccuracies, and bias.
All ideas and content presented in this paper were conceptualised without the aid of AL

18



	Introduction
	Related Work
	Rotary Ray Embedding
	Preliminaries
	Embedding Rays
	Asymmetric Rotations
	Multi-Modal Geometric Models

	Experiments
	RoRE Embedding
	Multi-Modal Scene understanding

	Conclusions
	Appendix
	Implementation Details
	RGB Experimental Details
	Multi-Modal Experimental Details

	Additional Results
	RoRE Results
	Fisheye Results
	Multi-Modal Results

	Energy Usage
	Generative AI Usage


